Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 17(11): e0278036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417483

RESUMO

Azospirillum baldaniorum Sp245, a plant growth-promoting rhizobacterium, can form biofilms through a process controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP). A. baldaniorum has a variety of proteins potentially involved in controlling the turnover of c-di-GMP many of which are coupled to sensory domains that could be involved in establishing a mutualistic relationship with the host. Here, we present in silico analysis and experimental characterization of the function of CdgB (AZOBR_p410089), a predicted MHYT-PAS-GGDEF-EAL multidomain protein from A. baldaniorum Sp245. When overproduced, CdgB behaves predominantly as a c-di-GMP phosphodiesterase (PDE) in A. baldaniorum Sp245. It inhibits biofilm formation and extracellular polymeric substances production and promotes swimming motility. However, a CdgB variant with a degenerate PDE domain behaves as diguanylate cyclase (DGC). This strongly suggest that CdgB is capable of dual activity. Variants with alterations in the DGC domain and the MHYT domain negatively affects extracellular polymeric substances production and induction of swimming motility. Surprisingly, we observed that overproduction of CdgB results in increased c-di-GMP accumulation in the heterologous host Escherichia coli, suggesting under certain conditions, the WT CdgB variant can behave predominantly as a DGC. Furthermore, we also demonstrated that CdgB is anchored to the cell membrane and localizes potentially to the cell poles. This localization is dependent on the presence of the MHYT domain. In summary, our results suggest that CdgB can provide versatility to signaling modules that control motile and sessile lifestyles in response to key environmental signals in A. baldaniorum.


Assuntos
Azospirillum , Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/metabolismo
2.
Sci Rep ; 11(1): 520, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436847

RESUMO

The plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


Assuntos
Azospirillum brasilense/genética , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Domínios Proteicos/genética , Azospirillum brasilense/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Raízes de Plantas/microbiologia , Sistemas do Segundo Mensageiro , Triticum/microbiologia
3.
FEBS Open Bio ; 10(11): 2305-2315, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32902187

RESUMO

Galectin-9 levels have been reported to be altered in several cancer types, but the mechanism that regulates the expression of Galectin-9 has not been clarified. Galectin-9 is encoded by the LGALS9 gene, which gives rise to eight mRNA variants. The aims of this study were: (a) to identify the mRNA variants of LGALS9, (b) to characterize CpG methylation and H3K9 and H3K14 histone acetylation at the promoter of the LGALS9 gene, and (c) to characterize the relationship between these modifications and LGALS9 expression level in cervical cancer cells. All mRNA variants were detected in HaCaT (nontumoural keratinocytes) and SiHa cells, and seven were observed in HeLa cells. The promoter region of LGALS9 contains eight CpG dinucleotides. No hypermethylation pattern related to low LGALS9 expression was identified in tumour cells. Chromatin immunoprecipitation analysis demonstrated higher acetylation of H3K9ac and H3K14ac in HaCaT cells, which was related to higher mRNA levels. The presence of the mRNA variants suggests that alternative splicing may regulate the expression of galectin-9 isoforms. The results of this study suggest that histone acetylation, but not promoter CpG methylation, may be involved in the transcriptional regulation of the LGALS9 gene.


Assuntos
Galectinas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Neoplasias do Colo do Útero/genética , Acetilação , Ilhas de CpG/genética , Metilação de DNA/genética , Feminino , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HaCaT , Células HeLa , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
FEMS Microbiol Lett ; 367(4)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105306

RESUMO

Elucidation of biofilm structure formation in the plant growth-promoting rhizobacterium Azospirillum brasilense is necessary to gain a better understanding of the growth of cells within the extracellular matrix and its role in the colonization of plants of agronomic importance. We used immunofluorescence microscopy and confocal laser scanning microscopy to study spatio-temporal biofilm formation on an abiotic surface. Observations facilitated by fluorescence microscopy revealed the presence of polar flagellin, exopolysaccharides, outer major membrane protein (OmaA) and extracellular DNA in the Azospirillum biofilm matrix. In static culture conditions, the polar flagellum disaggregated after 3 days of biofilm growth, but exopolysaccharides were increasing. These findings suggest that the first step in biofilm formation may be attachment, in which the bacterium first makes contact with a surface through its polar flagellum. After attaching to the surface, the long flagella and OmaA intertwine the cells to form a network. These bacterial aggregates initiate biofilm development. The underlying mechanisms dictating how the biofilm matrix components of A. brasilense direct the overall morphology of the biofilm are not well known. The methods developed here might be useful in further studies that analyze the differential spatial regulation of genes encoding matrix components that drive biofilm construction.


Assuntos
Azospirillum brasilense/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Azospirillum brasilense/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/metabolismo , DNA Bacteriano/metabolismo , Flagelina/metabolismo , Cinética , Microscopia Confocal , Microscopia de Fluorescência , Polissacarídeos Bacterianos/metabolismo
5.
Viral Immunol ; 29(2): 95-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709547

RESUMO

To clarify whether the suppressors of cytokine signaling (SOCS) are associated with denguevirus (DENV) evasion of the antiviral response, we analyzed the expression kinetics of SOCS1 and SOCS3 and of the antiviral genes MxA and OAS during DENV infection of U937 macrophages that were or not treated with interferon (IFN)-α. DENV infection produced a viral titer three times higher in untreated than in IFN-α-treated cells (p < 0.001 at 72 h postinfection [p.i.]). Partial inhibition of DENV replication was associated with reduced expression of MxA and OAS antiviral genes as well as higher SOCS1 and SOCS3 expression in DENV-infected cells than in cells treated only with IFN-α. Complete loss of phosphorylated-signal transducer and activator of transcription (p-STAT)2 and reduced nuclear importation of p-STAT1 were observed in DENV-infected cells compared to IFN-α treatment that induced p-STAT1 and p-STAT2. Our data thus suggest that overexpression of SOCS1 and SOCS3 induced by DENV infection leads to impairment of antiviral response through the inhibition of STAT functionality.


Assuntos
Vírus da Dengue/imunologia , Imunidade Inata , Macrófagos/imunologia , Macrófagos/virologia , Fator de Transcrição STAT1/antagonistas & inibidores , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Linhagem Celular , Vírus da Dengue/patogenicidade , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Transdução de Sinais
6.
Nucleic Acids Res ; 42(11): 6885-900, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24771346

RESUMO

The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Ativação Transcricional , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Proliferação de Células , Estradiol/farmacologia , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Coativador 1 de Receptor Nuclear/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Trocadores de Sódio-Hidrogênio/análise , Trocadores de Sódio-Hidrogênio/genética , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
J Biol Chem ; 289(22): 15554-65, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24737323

RESUMO

Estrogen receptor α (ERα) mediates the effects of 17ß-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Tristetraprolina/metabolismo , Animais , Neoplasias da Mama/genética , Proliferação de Células , Proteínas Correpressoras/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transcrição Gênica/fisiologia
8.
Asian Pac J Cancer Prev ; 15(3): 1181-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606438

RESUMO

Sialyltransferase gene expression is altered in several cancers, including examples in the cervix. Transcriptional regulation of the responsible genes depends on different promoters. We aimed to determine the association of single-nucleotide polymorphisms in the B3 promoter of the ST3GAL4 gene and the P1 promoter of the ST6GAL1 gene with cervical premalignant lesions or cervical cancer. A blood sample and/or cervical scrapes were obtained from 104 women with normal cytology, 154 with premalignant lesions and 100 with cervical cancer. We also included 119 blood samples of random donors. The polymorphisms were identified by sequencing from PCR products. For the B3 promoter, a fragment of 506 bp (from nucleotide -408 to +98) was analyzed, and for the P1 promoter a 490 bp (-326 to +164) fragment. The polymorphism analysis showed that at SNP rs10893506, genotypes CC and CT of the ST3GAL4 B3 promoter were associated with the presence of premalignant lesions (OR=2.89; 95%CI 1.72-4.85) and cervical cancer (OR=2.23; 95%CI 1.27-3.91). We detected only one allele of each polymorphism in the ST6GAL1 P1 promoter. We did not detect any genetic variability in the P1 promoter region in our study population. Our results suggest that the rs10893506 polymorphism -22C/T may increase susceptibility to premalignant and malignant lesions of the cervix.


Assuntos
Antígenos CD/genética , Colo do Útero/patologia , Lesões Pré-Cancerosas/genética , Sialiltransferases/genética , Neoplasias do Colo do Útero/genética , Antígenos CD/sangue , Sequência de Bases , Feminino , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/patologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Sialiltransferases/sangue , Neoplasias do Colo do Útero/sangue , beta-Galactosídeo alfa-2,3-Sialiltransferase
9.
Virus Res ; 185: 1-9, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24657783

RESUMO

Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Humana/genética , Fator de Necrose Tumoral alfa/genética , Regulação da Expressão Gênica , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Transdução de Sinais , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
Mol Genet Metab ; 111(3): 321-330, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24239178

RESUMO

In human cells, HCS catalyzes the biotinylation of biotin-dependent carboxylases and mediates the transcriptional control of genes involved in biotin metabolism through the activation of a cGMP-dependent signal transduction pathway. HCS also targets to the cell nucleus in association with lamin-B suggesting additional gene regulatory functions. Studies from our laboratory in Drosophila melanogaster showed that nuclear HCS is associated with heterochromatin bands enriched with the transcriptionally repressive mark histone 3 trimethylated at lysine 9. Further, HCS was shown to be recruited to the core promoter of the transcriptionally inactive hsp70 gene suggesting that it may participate in the repression of gene expression, although the mechanism involved remained elusive. In this work, we expressed HCS as a fusion protein with the DNA-binding domain of GAL4 to evaluate its effect on the transcription of a luciferase reporter gene. We show that HCS possesses transcriptional repressor activity in HepG2 cells. The transcriptional function of HCS was shown by in vitro pull down and in vivo co-immunoprecipitation assays to depend on its interaction with the histone deacetylases HDAC1, HDAC2 and HDAC7. We show further that HCS interaction with HDACs and its function in transcriptional repression is not affected by mutations impairing its biotin-ligase activity. We propose that nuclear HCS mediates events of transcriptional repression through a biotin-independent mechanism that involves its interaction with chromatin-modifying protein complexes that include histone deacetylases.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilases/genética , Biotina/metabolismo , Carbono-Nitrogênio Ligases/genética , Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Células Hep G2 , Heterocromatina/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Mol Genet Metab ; 103(3): 240-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21463962

RESUMO

This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Cromatina/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Carbono-Nitrogênio Ligases/genética , Núcleo Celular/enzimologia , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP72/genética , Células Hep G2 , Histonas/metabolismo , Temperatura Alta , Humanos , Dados de Sequência Molecular , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência
12.
J Biol Chem ; 283(49): 34150-8, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18845537

RESUMO

Biotinidase catalyzes the hydrolysis of the vitamin biotin from proteolytically degraded biotin-dependent carboxylases. This key reaction makes the biotin available for reutilization in the biotinylation of newly synthesized apocarboxylases. This latter reaction is catalyzed by holocarboxylase synthetase (HCS) via synthesis of 5'-biotinyl-AMP (B-AMP) from biotin and ATP, followed by transfer of the biotin to a specific lysine residue of the apocarboxylase substrate. In addition to carboxylase activation, B-AMP is also a key regulatory molecule in the transcription of genes encoding apocarboxylases and HCS itself. In humans, genetic deficiency of HCS or biotinidase results in the life-threatening disorder biotin-responsive multiple carboxylase deficiency, characterized by a reduction in the activities of all biotin-dependent carboxylases. Although the clinical manifestations of both disorders are similar, they differ in some unique neurological characteristics whose origin is not fully understood. In this study, we show that biotinidase deficiency not only reduces net carboxylase biotinylation, but it also impairs the expression of carboxylases and HCS by interfering with the B-AMP-dependent mechanism of transcription control. We propose that biotinidase-deficient patients may develop a secondary HCS deficiency disrupting the altruistic tissue-specific biotin allocation mechanism that protects brain metabolism during biotin starvation.


Assuntos
Biotina/fisiologia , Deficiência de Biotinidase/enzimologia , Biotinidase/química , Carbono-Nitrogênio Ligases/biossíntese , Sequência de Aminoácidos , Animais , Sequência de Bases , Biotina/química , Deficiência de Biotinidase/metabolismo , Encéfalo/metabolismo , Técnicas de Cultura de Células , GMP Cíclico/química , Deficiência de Holocarboxilase Sintetase/enzimologia , Deficiência de Holocarboxilase Sintetase/genética , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA